Search results for " signal"
showing 10 items of 2056 documents
The interleukin (IL)-31/IL-31R axis contributes to tumor growth in human follicular lymphoma
2014
Interleukin (IL)-31A binds to an heterodimer composed of IL-31 receptor A (IL-31RA) and Oncostatin M Receptor (OSMR). The IL-31/IL-31R complex is involved in the pathogenesis of various skin diseases, including cutaneous T-cell lymphoma. No information is available on the relations between the IL-31/IL-31R complex and B-cell lymphoma. Here we have addressed this issue in follicular lymphoma (FL), a prototypic germinal center(GC)-derived B-cell malignancy. IL-31 enhanced primary FL cell proliferation through IL-31R-driven signal transducer and activator of transcription factor 1/3 (STAT1/3), extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt phosphorylation. In contrast, GC B cells d…
Spatial noise-aware temperature retrieval from infrared sounder data
2020
In this paper we present a combined strategy for the retrieval of atmospheric profiles from infrared sounders. The approach considers the spatial information and a noise-dependent dimensionality reduction approach. The extracted features are fed into a canonical linear regression. We compare Principal Component Analysis (PCA) and Minimum Noise Fraction (MNF) for dimensionality reduction, and study the compactness and information content of the extracted features. Assessment of the results is done on a big dataset covering many spatial and temporal situations. PCA is widely used for these purposes but our analysis shows that one can gain significant improvements of the error rates when using…
Neurovascular EGFL7 regulates adult neurogenesis in the subventricular zone and thereby affects olfactory perception
2016
Adult neural stem cells reside in a specialized niche in the subventricular zone (SVZ). Throughout life they give rise to adult-born neurons in the olfactory bulb (OB), thus contributing to neural plasticity and pattern discrimination. Here, we show that the neurovascular protein EGFL7 is secreted by endothelial cells and neural stem cells (NSCs) of the SVZ to shape the vascular stem-cell niche. Loss of EGFL7 causes an accumulation of activated NSCs, which display enhanced activity and re-entry into the cell cycle. EGFL7 pushes activated NSCs towards quiescence and neuronal progeny towards differentiation. This is achieved by promoting Dll4-induced Notch signalling at the blood vessel-stem …
Retrograde neurotrophic signaling in rat retinal ganglion cells is transmitted via the ERK5 but not the ERK1/2 pathway.
2014
Purpose Neurotrophic deprivation is considered an important event in glaucomatous retinal ganglion cell (RGC) death. However, the mitogen-activated protein kinase (MAPK) pathway transmitting axonal neurotrophic signals in RGC has not been identified. We investigated the involvement of ERK5 and ERK1/2 in retrograde axonal neurotrophic signaling in rats. Methods Adult Sprague-Dawley rats were used. Retinal immunostaining for ERK5 and MEK5 was performed. Levels of total and phosphorylated ERK5 and ERK1/2 were analyzed in retinal lysate by quantitative Western blotting. The effects of age, brain-derived neurotrophic factor (BDNF) stimulation at RGC soma (intravitreal injection) or axon ending (…
Paracrine in vivo inhibitory effects of adipose tissue–derived mesenchymal stromal cells in the early stages of the acute inflammatory response
2015
Abstract Background aims Excessive or unresolved inflammation leads to tissue lesions. Adipose tissue–derived mesenchymal stromal cells (AMSCs) have shown protective effects that may be dependent on the modulation of inflammation by secreted factors. Methods We used the zymosan-induced mouse air pouch model at two time points (4 h and 18 h) to evaluate the in vivo effects of AMSCs and their conditioned medium (CM) on key steps of the early inflammatory response. We assessed the effects of AMSCs and CM on leukocyte migration and myeloperoxidase activity. The levels of chemokines, cytokines and eicosanoids in exudates were measured by use of enzyme-linked immunoassay or radio-immunoassay. In …
Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair
2015
Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α) and mRNA binding proteins (e.g. GAPDH, HuR) is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed …
CXCR7 Reactivates ERK Signaling to Promote Resistance to EGFR Kinase Inhibitors in NSCLC
2019
Abstract Although EGFR mutant–selective tyrosine kinase inhibitors (TKI) are clinically effective, acquired resistance can occur by reactivating ERK. We show using in vitro models of acquired EGFR TKI resistance with a mesenchymal phenotype that CXCR7, an atypical G protein-coupled receptor, activates the MAPK–ERK pathway via β-arrestin. Depletion of CXCR7 inhibited the MAPK pathway, significantly attenuated EGFR TKI resistance, and resulted in mesenchymal-to-epithelial transition. CXCR7 overexpression was essential in reactivation of ERK1/2 for the generation of EGFR TKI–resistant persister cells. Many patients with non–small cell lung cancer (NSCLC) harboring an EGFR kinase domain mutatio…
A novel technique for the CMRR improvement in a portable ECG system
2017
This paper presents a new technique to improve the quality of the ECG signals, increasing the Common Mode Rejection Ratio (CMRR). We developed a portable wireless Bluetooth ECG system able to acquire 12 leads, communicating with Smartphones and PCs. Many experiments have been made for measuring CMRR decay due to the difference on skin-electrodes impedances, the asymmetries of the amplifiers input stages and external components. Using some digital potentiometers, the system is able to compensate for these, increasing the CMRR of about 18 dB.
FGFR a promising druggable target in cancer: Molecular biology and new drugs.
2017
Abstract: Introduction: The Fibroblast Growth Factor Receptor (FGFR) family consists of Tyrosine Kinase Receptors (TKR) involved in several biological functions. Recently, alterations of FGFR have been reported to be important for progression and development of several cancers. In this setting, different studies are trying to evaluate the efficacy of different therapies targeting FGFR. Areas Covered: This review summarizes the current status of treatments targeting FGFR, focusing on the trials that are evaluating the FGFR profile as inclusion criteria: Multi-Target, Pan-FGFR Inhibitors and anti-FGF (Fibroblast Growth Factor)/FGFR Monoclonal Antibodies. Expert opinion: Most of the TKR share …
Quantification and automatized adaptive detection of in vivo and in vitro neuronal bursts based on signal complexity.
2015
In this paper, we propose employing entropy values to quantify action potential bursts in electrophysiological measurements from the brain and neuronal cultures. Conventionally in the electrophysiological signal analysis, bursts are quantified by means of conventional measures such as their durations, and number of spikes in bursts. Here our main aim is to device metrics for burst quantification to provide for enhanced burst characterization. Entropy is a widely employed measure to quantify regularity/complexity of time series. Specifically, we investigate the applicability and differences of spectral entropy and sample entropy in the quantification of bursts in in vivo rat hippocampal meas…